| |
1. |
Algarni, M., Choi, Y. & Bai,Y., 2017. A unified material model for multiaxial ductile fracture and extremely low cycle fatigue of Inconel 718. International Journal of fatigue, 96, pp.162-177.
|
2. |
Banabic, D., 2010. A review on recent developments of Marciniak-Kuczynski model. Computer Methods in Materials Science, 10(4), pp.225-237. |
3. |
Bai, Y. & Wierzbicki, T., 2008. A new model of metal plasticity and fracture with pressure and lode dependence. International Journal of Plasticity, 24(6), pp.1071-1096. ,
|
4. |
Bai, Y. & Wierzbicki, T., 2010. Application of extended Mohr-Coulomb criterion to ductile fracture. International Journal of Fracture, 161(1), pp.1-20. |
5. |
Bao, Y. & Wierzbicki, T., 2004. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46(1), pp.81-98.
|
6. |
Benzerga, A.A., 2002. Micromechanics of coalescence in ductile fracture. Journal of the Mechanics and Physics of Solid, 50(6), pp.1331-1362.
|
7. |
Bonora, N., 1997. A nonlinear CDM model for ductile failure. Engineering Fracture Mechanics, 58(1-2), pp.11-28.
|
8. |
Bonora, N., Gentile, D., Pirondi, A. & Newaz, G. 2005, Ductile damage evolution under triaxial state of stress: theory and experiments. International Journal of Plasticity, 21, pp.981-1007.
|
9. |
Choung, J., 2009. Comparative studies of fracture models for marine structural steels. Ocean Engineering, 36(15), pp.1164-1174.
|
10. |
Choung, J., Shim, C.S. & Kim, K.S., 2011. Plasticity and fracture behaviors of marine structural steel, part III: Experimental study on failure strain. Journal of Ocean Engineering and Technology, 25(3), pp.53-66.
|
11. |
Choung, J., Shim. C.S. & Song, H.C., 2012. Estimation of failure strain of EH36 high strength marine structural steel using average stress triaxiality. Marine Structures, 29(1), pp.1-21.
|
12. |
Choung, J. & Nam, W., 2013. Formulation of failure strain according to average stress triaxiality of low temperature high strength steel (EH36). Journal of Ocean Engineering and Technology, 27(2), 19-26.
|
13. |
Choung, J., Nam, W. & Kim, Y., 2014a. Fracture simulation of low-temperature high-strength steel (EH36) using user- subroutine of commercial finite element code. Journal of Ocean Engineering and Technology, 28(1), pp.34-46.
|
14. |
Choung, J., Nam, W., Lee, D. & Song, S.Y., 2014b. Failure strain formulation via average stress triaxiality of an high strength steel for arctic structures. Ocean Engineering, 91, pp.218-226.
|
15. |
Choung, J., Park, S.J. & Kim, Y., 2015a. Development of three dimensional fracture strain surface in average stress triaxiaility and average normalized lode parameter domain for arctic high tensile steel: Part I theoretical background and experimental studies. Journal of Ocean Engineering and Technology. 29(6), pp.445-453.
|
16. |
Choung, J., Park, S.J. & Kim, Y., 2015b. Development of three-dimensional fracture strain surface in average stress triaxiaility and average normalized lode parameter domain for arctic high tensile steel: Part II formulation of fracture strain surface. Journal of Ocean Engineering and Technology. 29(6), pp.454-462.
|
17. |
Erice, B., Roth, C.C. & Mohr, D., 2017. Stress-state and strain-rate dependent ductile fracture of dual and complex phase steel. Mechanics of Materials, 16, pp.11-32.
|
18. |
Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth: part I - yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 99(1), pp.2-15.
|
19. |
Hooputra, H., Gese, H., Dell, H. & Werner, H., 2004, A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashwerthiness, 9(5), pp.449-463.
|
20. |
Johnson, G.R. & Cook, W., 1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), pp.31-48.
|
21. |
Kõrgesaar, M., Remes, H. & Romanoff, J., 2014. Size dependent response of large shell elements under in-plane tensile loading, International Journal of Solids and Structures, 51, pp.3752-3761.
|
22. |
Kõrgesaar, M., Romanoff, J., Remes, H. & Palokangas, P. 2018. Experimental and numerical penetration response of laswer-welded stiffened panels. International Journal of Impact Engineering, 114, pp.78-92.
|
23. |
Lemaitre, J. 1985. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology, 107, pp.83-89.
|
24. |
Leblond, J. B., Perrin, G. & Devaux, J., 1995. An improved Gurson-type model for hardenable ductile metals. European Journal of Mechanics Series a Solids, 14(2), pp.499-527. |
25. |
McClintock, F.A., 1968. Acriterion for ductile fracture by the growth of holes. Journal of Applied Mechanics. 35(2), pp.363-371.
|
26. |
Mohr, D. & Marcadet, S., 2015. Micromechanically- motivated phenomenological hosford-coulomb model for predicting ductile fracture initiation at low stress triaxialites. International Journal of Solids and Structures. 67-68, pp.40-55.
|
27. |
Nahshon, K. & Hutchinson, J., 2008. Modication of the Gurson model for shear failure. European Journal of Mechanics- A/Solids, 27(1), pp.1-17.
|
28. |
Nielsen, K. L. & Tvergaard, V., 2010. Ductile shear failure or plug failure of spot welds modelled by modied Gurson model. Engineering Fracture Mechanics, 77(7), pp.1031-1047.
|
29. |
Park, S.J., Lee, K. & Choung, J., 2016. Punching fracture simulations of circular unstiffened steel plates using three- dimensional fracture surface. Journal of Ocean Engineering and Technology, 30(6), pp.474-483.
|
30. |
Pack, K. & Mohr, D., 2017. Combined necking & fracture model to predict ductile failure with shell finite elements. Engineering Fracture Mechanics, 182, pp.32-51.
|
31. |
Park, S.J., Lee, K., Choung, J. & Walters, C.L., 2018. Ductile fracture prediction of high tensile steel EH36 using new damage functions. Ships and Offshore Structures, 13, pp.68-78.
|
32. |
Papasidero, J., Doquet, V. & Mohr, D., 2015. Ductile fracture of aluminum 2024-T351 under proportional and non- proportional multi-axial loading: Bao-Wierzbicki results revisited. International Journal of Solids and Structures, 69-70, pp.459-474.
|
33. |
Rice, J.R. & Tracey, D.M., 1969. On the ductile enlargement of voids in triaxial stress. Journal of the Mechanics and Physics of Solids. 17(3), pp.201-217.
|
34. |
Simulia. 2018. Abaqus user manual, Simulia. |
35. |
Tvergaard, V. & Needleman, A., 1984. Analysis of the Cup-cone Fracture in a Round Tensile Bar. Acta Metallurgica, 32(1), pp.157-169.
|
36. |
Walters, C.L., 2014, Framework for adjusting for both stress triaxiality and mesh size effect for failure of metals in shell structures. International Journal of Crashworthiness, 19(1), pp.1-12.
|
37. |
Woo, S.H., Lee, K. & Choung, J, 2017, Design of subsea manifold protective structure against dropped object impacts. Journal of Ocean Engineering and Technology, 31(3), pp.233-240. |
38. |
Xue, L., 2007. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. International Journal of Solids and Structures, 44(16), pp.5163-5181.
|