Check for updates

# 주성분의 선형 결합을 통한 다변수 식별에 기반한 선박 조종 운동 모델 개발

김동환<sup>1</sup>·김민창<sup>2</sup>·이승범<sup>2</sup>·서정화<sup>2,3†</sup> 충남대학교 미래모빌리티시스템연구소<sup>1</sup> 충남대학교 자율운항시스템공학과<sup>2</sup> 충남대학교 선박해양공학과<sup>3</sup>

# Ship Dynamics Modeling Based on Multivariate Identification by Linear Combination of Principal Components

Dong-Hwan Kim<sup>1</sup>·Minchang Kim<sup>2</sup>·Seungbeom Lee<sup>2</sup>·Jeonghwa Seo<sup>2,3†</sup> Research Institute of Future Mobility System, Chungnam National University<sup>1</sup> Department of Autonomous Vehicle System Engineering, Chungnam National University<sup>2</sup> Department of Naval Architecture and Ocean Engineering, Chungnam National University<sup>3</sup>

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

The present study suggests a data-driven multivariate identification method based on principal component analysis and shows an application to ship dynamics modeling in maneuver. A reduced order model of ship dynamics is built by linear combination of three principal components acquired from large angle zigzag maneuver test. For a given kinematic state with three variables, a proper span is found by least square method, therefore accompanying hydrodynamic force and moment is determined. Suggested dynamics model correctly estimates hydrodynamic force and moment, thus it showed good agreement in maneuver simulation with that of conventional ship dynamics model obtained by system identification of captive model tests.

Keywords : Principal Component Analysis(주성분 분석), Ship Maneuver(선박 조종), Dynamics Modeling(동역학 모델링)

# 1. 서 론

2010년대 초반부터 데이터 기반 모델링 기법이 발전함에 따라 선박의 조종 운동 문제로의 응용이 시도되고 있다. 데이터 기반 모델링은 데이터 변수 간의 공간/시간적 상호상관성에 기반해 데 이터를 분석하는 기법이다. 이는 기존의 구속모형시험을 통한 다 항식 기반 모델의 시스템 식별(system identification)이나 전산유 체역학(Computational Fluid Dynamics, CFD)과 같은 유체역학 문제의 지배방정식을 이용한 접근법에 비해 모델의 구성이 자유 롭고, 실제 물리 현상의 결과를 이용하므로 현실성이 높다는 장 점이 있다. 따라서 시스템 식별이나 수치해석에서 고려되지 못한 물리 현상이나 외란의 영향을 확인할 수 있다.

선박조종문제에 있어 데이터기반 접근법은 2010년대 초반 이 후 서포트벡터머신 (Zhang and Zou, 2011; Jian et al., 2015; Luo and Li, 2017; Wang et al., 2019), 인공신경망 (Wakita et al., 2022; Lou et al., 2022; Wang et al., 2022) 그리고 유전알 고리즘 (Sutulo and Soares, 2014; Bonci et al., 2015)이 주를 이루었다. 그리고 베이지안네트워크 (Xue et al., 2020) 방식이나 최소자승법(least square method, LSQ) (Chillcce and Moctar, 2023), 가우시안회귀방법 (Liu et al., 2023; Ouyang et al., 2023a; Ouyang et al., 2023b)의 적용 사례가 있다. 하지만 이런 연구에서 사용된 기법들은 변수 간의 관계를 사용자가 이해할 수 없는 블랙박스(black box)식 접근법이 다수를 이뤄, 모델 구성의 물리적 근거를 설명할 수 없다는 문제가 있다.

선박 조종과 같이 제어 실패 시 위험성이 큰 문제에 대해서 블 랙박스 접근을 통한 데이터 기반 모델링을 할 때에는 다음의 사항 을 고려해야 한다. 우선 모델링의 결과가 물리적으로 타당한지를 확인하는 별도의 절차가 필요하며, 학습 데이터를 넘어서는 영역에 서도 모델링이 타당한 결과를 내는지를 검증해야 한다. 그리고 모 델링을 위한 데이터를 대상 시스템의 실제 운용 과정 중에 얻는 경 우가 대부분이므로 해석에 영향을 줄 수 있는 외란의 영향이나 계 측 시 잡음에 대한 필터링이 요구된다. 필터링 과정에서 개발자가 자의적으로 변수 영향을 축소할 수 있으므로, 데이터 기반 모델링 의 장점으로 든 다양한 변수 영향의 식별의 효용성은 기대되는 수 준에 미치지 못할 수 있다. 마지막으로, 딥러닝과 같이 수학적 계 산의 소요가 큰 모델링 방법을 택할 경우, 새 데이터를 추가하는데 따른 조종 모델의 즉각적인 수정이 불가능하다는 점이 있다.

이러한 문제를 해결하기 위해서는 수학적으로 간단하며 사용 자가 내부를 이해할 수 있는 조종 운동 해석 기법이 필요하다. Kim et al. (2024)의 연구에서는 주성분 분석(principal component analysis, PCA)을 이용해 선박의 조종 운동 중 동역학적 변수, 즉 운동과 유체력의 주요한 패턴을 구하고, 주성분을 조종 시나리오 에 투영하여 각각이 내포하는 물리적 특성을 설명한 바가 있다. 선박의 4자유도 운동에 대한 PCA를 통해 주성분은 선박의 선회 중 연성된 운동 성분이 지배적이며, 추가로 고유 횡동요, 천이영 역의 동역학적 특성 순으로 중요도가 분포함을 주성분에 대응하 는 고유값의 크기 비교를 통해 확인하였다.

앞에서 보인 사례와 같이 PCA는 여러 변수로 구성된 다차원의 공간에서 데이터의 분산이 최대가 되는 주성분을 구하는데 사용 된다. 이는 데이터의 주요한 패턴으로 이해될 수 있다. PCA를 통 해 데이터를 주요 패턴의 선형결합으로 저차원화하여 나타낼 수 있으며, 이러한 성질은 주요 패턴이나 변수간의 상관관계와 무관 하게 나타는 잡음의 제거 문제에도 응용될 수 있다 (Bishop, 2006; Lever et al., 2017; Brunton and Kutz, 2019). 그리고 선 형 결합을 통해 데이터를 표현하므로, 학습에 이용된 데이터의 범위를 벗어나는 상황에서도 안정적인 데이터 추정을 기대할 수 있다. 이런 장점을 선형성이 강한 물리 현상인 선박 조종 운동의 모델링에 적용한다면 한정된 수의 주성분으로 선박의 조종 운동 을 저차원화하여 표현할 수 있고, 그 주성분들의 물리적 의미를 사용자가 이해할 수 있기 때문에 기존의 데이터 기반 블랙박스 모델링 기법에 비해 활용성이 클 것으로 생각된다.

본 연구에서는 선박의 운동에 대응하는 유체력의 추정을 위해 주성분의 선형 결합을 이용하는 방안을 제안하였다. 우선 학습용 의 조종 운동 데이터에서 주성분을 구하여 조종 운동 모델의 기 본 구성을 갖추었다. 그리고 매 순간에 대해 주어진 운동 변수를 재구성할 수 있는 주성분의 선형 결합을 LSQ를 이용해 구하는 방식으로 운동에 대응하는 유체력을 얻는 운동 모델을 개발하였 다. 이 모델을 선박의 3자유도 운동에 적용하여 주요한 조종 시 니리오의 해석이 가능함을 보였다.

본 논문은 다음과 같이 구성되었다. 2장에서는 주성분 기반의 다변수 식별 방법을 설명하였다. 3장은 연구 대상 선형과 조종 모델을 소개하였다. 4장에 주요 조종 시나리오에 대한 주성분 추 출, 이를 이용한 조종 모델의 비교검증 결과를 다뤘다. 5장은 본 연구의 결론이다.

# 2. 다변수 식별 모델

#### 2.1 주성분 해석

본 연구에서 제안되는 주성분의 선형 결합을 통한 다변수 식별 법(multivariate identification by linear combination of principal components, MILP)을 선박 조종보다는 일반적인 관점에서 우선 설명하였다. 이를 선박의 조종 운동에 적용한 구체적인 내용은 이후 4장에서 다뤘다. n개의 변수로 구성된 데이터 벡터  $a = [a_1 \cdots a_n]^T$ 를 다루는 시스템을 가정한다. a에 대한 여러 번의 계측으로 얻은 데이터 A에서 데이터의 공칭상태( $\overline{a}$ )를 빼 서 요동 성분을 구한다. 그리고 각 변수들간의 Pearson coefficient로 구성된  $n \times n$  크기의 상호상관행렬  $A_C$ 를 구한 다. PCA에서는  $A_C$ 에서 얻을 수 있는 n개의 고유벡터( $\hat{e}_i$ )에 대 해 대응하는 고유값( $\lambda_i$ )의 크기를 각각 비교하여 유효한 k개의  $\hat{e}_i$ 를 추출한다. 그리고 식 (1)과 같이  $\hat{e}_i$ 의 선형 결합을 이용해 a를 근사하여 나타낸다.

$$\boldsymbol{a} \approx \overline{\boldsymbol{a}} + \sum_{i=1}^{k} b_i \hat{\boldsymbol{e}}_i$$
 (1)

선형 결합의 계수 벡터  $\boldsymbol{b} = [b_1 \cdots b_k]$ 는 식 (2)와 같이 직교 기저인  $\hat{\boldsymbol{e}}_i$ 로 구성된 공간 상에  $\boldsymbol{a} - \overline{\boldsymbol{a}}$ 를 투영하여 얻는다.

 $b_i = (\boldsymbol{a} - \overline{\boldsymbol{a}})^T \bullet \hat{\boldsymbol{e}}_i \tag{2}$ 

#### 2.2 변수 식별

식 (1)과 (2)를 이용한 저차원화 문제에서  $\boldsymbol{b} \in \boldsymbol{a} \equiv$  이루는 변수를 모두 아는 때만 완성할 수 있다. 본 연구의 다변수 식별은  $\boldsymbol{a}$ 에서 n보다 작은 m개의 일부 변수 $(\boldsymbol{a}_{in} = [a_1 \cdots a_m]^T)$ 만을 알고 있을 때, 나머지 (n-m)개의 변수 $(\boldsymbol{a}_{out} = [a_{m+1} \cdots a_n]^T)$ 를 구하는 모델 $(\boldsymbol{a}_{out} = f(\boldsymbol{a}_{in}))$ 을 구하는 과정이다. Fig. 1에 그 과정을 나타냈다.

임의의 학습 데이터 A 로부터 식 (1)을 구성하는데 필요한  $\bar{a}$ ,  $e = [\hat{e}_1 \cdots \hat{e}_n]$ 를 얻는다. 학습에 사용되지 않은 데이터인  $a_{in}$ 이 식의 좌변에 주어졌다면 우변에서 이를 근사할 수 있는 b를 구한다. k > m이라면 연립방정식의 수보다 구해야 하는 변수의 수가 더 많은 과소결정계(underdetermined system)가 되므로,  $k \le m$ 일 때에만 b가 얻어진다. 본 연구에서는 b를 최소지승 법을 통해 구하였다. 이제 식 (1)에서 우변이 완성되었으므로 좌 변의 a도 유일하게 결정되어 그 일부인  $a_{out}$ 를 구할 수 있다.



(1) Mean and eigen vectors are obtained from training datasets.

(2) Known variables are inputted to the modeling.

- (3) Proper set of coefficient for known variables is found by LSQ.(4) Left-hand side with unknown variables is reconstructed.
- Fig. 1 Scheme of MILP

# 3. 해석 대상

#### 3.1 선형

본 연구에서 조종 운동 모델의 개발을 위해 사용된 선형은 1/45.7 스케일의 KVLCC2 선형이다. 해당 선형은 Yasukawa and Yoshimura(2015)의 연구에서 조종 모델이 제안된 바 있다. Fig. 2와 Table 1은 각각 선형의 형상과 주요 요목이다.

#### 3.2 좌표계

조종 중인 선박의 3자유도 운동은 전후동요(surge), 좌우동요 (sway), 선수동요(yaw)만으로 구성된 수평면 상의 운동으로, 지 구고정좌표계( $O - \xi\eta$ )와 물체고정좌표계(o - xy)를 이용해 동 역학 해석을 수행했다. Fig. 3은 본 연구에 사용된 좌표계이다.

지구고정좌표계는 조종 운동 시작 시의 선체 중심의 수평면 투 영 위치를 원점(O)으로 놓고, 같은 시점의 선수 방향을  $\xi$ , 우현 방향을  $\eta$ 로 정의하였다. 이는 선체의 궤적을 표시하는데 사용된 다. 물체고정좌표계는 이동하는 선체의 길이 중심을 원점(o)으로 하고, 선수 방향, 우현 방향을 각각 x, y로 정의하였다. 이 방향 의 속도와 유체력은 각각 u, v, X, Y으로 정의하였다.

선수각( $\psi$ )은  $\xi$ 와 x 방향이 이루는 각도로, 오른손 직교좌표계 의 정의를 따라 시계방향이 양의 방향으로 정의된다. 사항각( $\beta$ ) 은 선체의 속도벡터( $u\hat{i} + v\hat{j}$ )와 x 방향이 이루는 각도로, 이는 선체가 운동하는 방향에서 선수가 얼마나 엇나갔는지를 의미한 다. v와  $\beta$ 의 부호를 같게 하기 위해  $\psi$ 와 반대로 반시계방향을 양의 방향으로 정의하였다. 수평면상의 회전 운동에서 선체의 각



Fig. 2 Sheer plan of KVLCC2

|                                | Unit           | Symbol | Model scale | Full scale |  |
|--------------------------------|----------------|--------|-------------|------------|--|
| Scale ratio                    | -              | -      | 1/45.7      |            |  |
| Length between perpendiculars  | m              | L      | 7.002       | 320        |  |
| Breadth                        | m              | В      | 1.269       | 58         |  |
| Draft                          | m              | Т      | 0.455       | 20.8       |  |
| Displacement                   | m <sup>3</sup> | M      | 3.275       | 312,600    |  |
| Block coefficient              | -              | $C_B$  | 0.          | 810        |  |
| Longitudinal center<br>of mass | m              | $x_G$  | 0.245       | 11.2       |  |
| Propeller diameter             | m              | $D_P$  | 0.216       | 9.86       |  |
| Rudder span length             | m              | $H_R$  | 0.346       | 15.80      |  |
| Rudder area                    | m²             | $A_R$  | 0.054       | 112.5      |  |

Table 1 Principal particulars of KVLCC2



Fig. 3 Coordinate system

속도와 모멘트는 각각 *r*, *N*으로 정의하였다. 방향타각(δ)은 선 수가 시계방향으로 선회하도록 하는 방향을 양의 방향으로 정의 하였는데, 이는 방향타의 반시계 방향의 회전에 대응된다.

#### 3.3 조종 모델

조종 모델은 선체, 추진기, 방향타의 유체력과 모멘트를 조합 해 전체 유체력과 모멘트를 구하는 컴포넌트 모델(component model)을 사용하였다. 식 (3)의 선체의 3자유도 운동방정식에서 *H*, *P*, *R*의 아래첨자는 각각 선체, 추진기, 방향타의 항을 의 미한다.

$$(M+M_x)\dot{u} - (M+M_y)v_mr - x_GMr^2 = X_H + X_P + X_R (M+M_y)\dot{v}_m + (M+M_x)ur + x_GM\dot{r} = Y_H + Y_R (I_{zG} + x_G^2 + J_z)\dot{r} + x_GM(\dot{v}_m + ur) = N_H + N_R$$
(3)

여기서  $M, M_x, M_y, I_z, J_z$ 는 각각 선체 질량, x, y 방향의 부가질량, 선수동요에 대한 관성모멘트, 부가관성모멘트이다. u,  $v_m, r$ 는 가속도와 각가속도이다.  $x_G$ 는 물체고정좌표계에서 무 게중심의 x 방향 위치이다.  $v_m$ 은 원점인 선체 중앙의 좌우동요 속도로, 무게중심의 속도 v와 식 (4)의 관계를 갖는다.

$$v_m = v - x_G r \tag{4}$$

운동방정식의 운동 변수들은 물의 밀도( $\rho$ ), 선체의 수평면상 속력( $U = \sqrt{u^2 + v_m^2}$ ), L, T를 이용해 무차원화하였다. 각 차원에 대한 무차원화 내용은 Table 2에 나타내었으며, 무차원화 된 변수는 모두 '을 표시하였다.

무차원화된 선체의 유체력과 모멘트는 식 (5)와 같이  $v'_m$ , r'에 대한 다변수 테일러 급수(Taylor series)로 나타내는 경우가 일 반적이다. 본 연구에서는 Yasukawa and Yoshimura (2015)의 연 구에서 사용된 조종 계수 세트를 사용하였다. 이 계수를 사용한 동역학 모델은 뒤에서는 Original model이라고 부르도록 한다.

$$\begin{aligned} X_{H}'(v'_{m},r') &= -R_{0}' + X_{vv}'v'_{m}^{2} + X_{vr}'v'_{m}r' + X_{rr}'r'^{2} + X_{vvvv}'v'_{m}^{4} \\ Y_{H}'(v'_{m},r') &= Y_{v}'v'_{m} + Y_{r}r' + Y_{vvv}'v'_{m}^{3} + Y_{vvr}'v'_{m}^{2}r' + Y_{vvr}'v'_{m}r' + Y_{rrr}'r'^{3} \\ N_{H}'(v'_{m},r') &= N_{v}'v'_{m} + N_{r}r' + N_{vvv}'v'_{m}^{3} + N_{vvr}'v'_{m}^{2}r' + N_{vvr}'v'_{m}^{2}r' + N_{rrr}'r'^{3} \end{aligned}$$
(5)

본 연구에서 개발된 데이터 기반 조종 운동 모델은 선체 유체력 항 중 조종 운동에 큰 영향을 주는  $Y_H$ 와  $N_H$ 를 2장에서 제안한 MLP 기반의 데이터 기반 모델링으로 대체하는 것을 목표로 한다.  $X_H$ 에 대해서는 경험식인 식 (6)으로 대체하였다 (Lewandowski, 2002).  $R_0$ 는 직진 중 저항이다.

$$X_{rr'} = 0.07 \left(\frac{B}{L}\right)^2 \left[1 + 0.08 \left(\frac{T}{B}\right)^2\right]^2$$

$$X_{vv'} = -12 X_{rr'}$$

$$X_{H'} = X_{vv'} v'_m^2 + X_{rr'} r'^2 - R_0'$$
(6)

MLP 기반 모델은 식 (5)의 운동과 유체력 및 모멘트의 입출력 관계를 식 (7)과 같이 주성분의 선형 결합으로 대체한다. 본 연구 에서는 r'관련 성분의 비선형적 거동을 설명하기 위해 u'r'을 추가하였다.  $v'_m$ , r', u'r'이 주어지면 이에 대응하는  $b_1$ ,  $b_2$ ,  $b_3$ 를 최소지승법으로 식별하여  $Y'_{H}$ ,  $N'_{H}$ 을 얻는다.

$$\begin{bmatrix} v'_{m} \\ r' \\ u'r' \\ Y'_{H} \\ N'_{H} \end{bmatrix} = b_{1}\hat{\boldsymbol{e}}_{1} + b_{2}\hat{\boldsymbol{e}}_{2} + b_{3}\hat{\boldsymbol{e}}_{3}$$
(7)

추진기의 추력 $(X_p)$ 과 방향타의 유체력, 모멘트 $(X_R, Y_R, N_R)$ 는 Yasukawa and Yoshimura (2015)의 모델을 그대로 따랐 으므로 본 연구에서 그 내용을 상세히 설명하지는 않았다. 추진 기의 추력 모델은 추력감소비 $(t_p)$ 를 고려하여 전진비 $(J_p)$ 의 함 수로 나타내었다.

Table 2 Non-dimensionalized variables for ship dynamics

| modeling                    |                         |                        |
|-----------------------------|-------------------------|------------------------|
| Dimension                   | Variables               | Non-dimensionalization |
| Length                      | $x_G$ , $\xi$ , $\eta$  | L                      |
| Mass                        | $M$ , $M_x$ , $M_y$     | $0.5 ho L^2 T$         |
| Second moment of<br>inertia | $I_z$ , $J_z$           | $0.5 ho L^4 T$         |
| Area                        | _                       | LT                     |
| Velocity                    | $u$ , $v_m$             | U                      |
| Angular velocity            | r                       | U/L                    |
| Acceleration                | $\dot{u}$ , $\dot{v}_m$ | $U^2/L$                |
| Angular acceleration        | $\dot{r}$               | $U^{2}/L^{2}$          |
| Force                       | X, Y                    | $0.5 ho LTU^2$         |
| Moment                      | N                       | $0.5 ho L^2 TU^2$      |
|                             |                         |                        |

$$X_P = (1 - t_P)\rho n_P^2 D_P^4 (k_2 J_P^2 + k_1 J_P + k_0)$$
(8)

여기서 np는 추진기의 회전수이다.

방향타의 유체력과 모멘트는 식 (9)와 같이 타 직압력 $(F_N)$ 을 이용해 계산하였다.  $t_R$ ,  $a_H$ ,  $x_H$ 는 선체와 방향타의 상호작용에 대한 계수이고,  $x_R$ 은 방향타 위치의 x방향 좌표이다.

Fig. 4는 본 연구에서 제안된 MLP 모델 기반 조종 시뮬레이 션의 전체적인 절차이다. 시뮬레이션 이전의 데이터 전처리(data preprocess)는 주어진 학습 데이터에 대해 2.1장의 내용을 통해  $\overline{a}$ , e를 구하는 과정이다. MLP를 적용하는데 있어 데이터의 선 형성을 최대한 확보하기 위해 서로 기함수의 구성을 갖는 v, r,  $Y_H$ ,  $N_H$ 에 비선형성을 다루기 위한 ur을 추가해 a를 구성하 였다. 따라서 n = 5, 입력 변수는 v, r, ur의 3개이므로 k = m = 3인 모델을 적용할 수 있다.

조종 시뮬레이션의 매 순간에서는 U,  $\beta$ 의 계산과  $n_P$ ,  $\delta$ 의 제어기가 순서대로 구동된다. 그리고 이 조건의 선체, 추진기, 방향타의 유체력과 모멘트를 계산한다. 식 (3)을 이용해 구한 u,  $v_m$ , r에 대한 수치적분을 통해 다음 time step의 u,  $v_m$ , r을 구하는 과정을 반복한다.

#### 3.4 조종 시나리오

모든 조종 시나리오는 모형스케일로 수행되었으며 직진 상태 프루드 수 (Froude number,  $Fr = U_0 / \sqrt{gL}$ ) 0.142에서의 자 항점에서 시작하였다. 여기서 g는 중력가속도이다. 자항점에서 의 프로펠러 회전수는 11.83rps이다.

MLP 기반 조종 운동을 위한 학습 데이터는 Araki et al.(2012) 에서 제안된 대각도 지그재그 시험(large angle zigzag test)을 통 해 얻어졌다. 이는 통상적인 지그재그 시험에 비해 방향타각의 수정 시점을  $\delta$ 보다 더 큰  $\Delta \psi$ 에서 설정하는 방식으로, 선회 초 기와 정속 선회 중의 동역학적 특성을 함께 다룰 수 있다. 조종 시나리오의 종료는 두 번의 선회 후  $\psi = 0$ °이 되는 시점으로 하였다. 본 연구에서는  $\delta = 25$ °, $\psi = 90$ °조건의 대각도 지그재그 시험을 수행한 결과만을 이용하여 주성분을 추출하여 MLP 모델 을 구성하였다. Fig. 5는 25°/90° 대각도 지그재그 조종 시험의 궤적과 운동의 시계열이다.

MLP를 통해 개발한 조종 운동 모델의 검증은 무작위 조종 시 니리오를 통해 수행하였다. 우선  $\delta$ 를 -35°에서 35°까지 5° 단위



Fig. 4 Flow chart of maneuver simulation using MILP model

김동환·김민창·이승범·서정화

로 나누어 0°을 제외한 14개 조건 중 선택하게 하였다. 이를 편 의상 Dice 1이라고 한다. 그리고 Dice 1으로 선택된  $\delta$ 에 대해 선 수각 변화( $\Delta\psi$ )를  $\delta$ 의 50%에서 300%까지 50% 단위로 나누어 6개 조건 중 선택하게 하였다. 이는 Dice 2라고 하였다. 예를 들 어  $\delta = 20^\circ$ ,  $\Delta\psi = 100\%\delta$ 가 선택되었다면 일반적인 20°/20° 지그재그 시험의 수행 조건과 같게 된다. 무작위 조종 시험은 이 렇게 무작위로 선택된 Dice 1, 2로 구성된 단위 시나리오를 연속 해서 수행하였다. 본 연구에서는 1000초 동안 조종 시나리오를 수행하였다. Fig. 6은 무작위 조종 시험의 궤적 예시이다.

# 4. 조종 모델 개발 결과

#### 4.1 주성분 추출

학습 데이터로 사용하기 위한 25°/90° 대각도 지그재그 조종 시험 시나리오를 Original model을 이용하여 좌, 우 선회에 대해 수행하고, 그 결과로부터 2.1장에서 제안된 방법을 통해 주성분 을 추출하였다. Fig. 5의 시뮬레이션 결과로부터 각 변수 간의 상 호상관도를 계산해  $A_C$ 를 구해 Fig. 7에 나타내었다.

2.2장의 조종 모델 구성에서 설명한 바와 같이  $X_{H}$ '은 운동 성분에 대해 우함수의 구성을 가지므로 다른 변수와의 상호상관 적인 관계가 드러나지 않았다. 따라서  $A_{C}$ 는  $X_{H}$ '를 배제하고  $v'_{m}, r', u'r', Y_{H}', N_{H}'$ 의 5가지 변수에 대해서 구성하였 다. u'r'에 대해서는 조종 운동 전반에서  $u' \gg v_{m}'$ 의 이유로 그 값이 1에 가깝게 얻어진다. 따라서 u'r'과 r'은 거의 같은 상 호상관도를 가지나, 둘의 작은 차이가 조종 운동에서의 비선형성 을 설명하는데 도움이 될 것으로 판단하였다.

5개의 변수에 대해 구성된  $\mathbf{A}_{C}$ 는 5개의  $\hat{\mathbf{e}}_{i}$ 를 갖는다. 그리고  $\hat{\mathbf{e}}_{i}$ 의 중요도는 대응되는 고유값인  $\lambda_{i}$ 의 크기로 그 순서가 정해 진다. 그리고 식 (10)의 유사도 $(s_{i})$ 를 이용해 문제를 저차원화하 는데 필요한  $\hat{\mathbf{e}}_{i}$ 의 수를 정할 수 있다.







Fig. 6 Example of trajectory of random maneuver test by Original model



Fig. 7 Correlation matrix for dynamics variables of 25°/90° large angle zigzag test by original model

$$s_k = \sum_{i=1}^k \lambda_i / \sum_{i=1}^5 \lambda_i \tag{10}$$

Table 3은  $\mathbf{A}_{C}$ 에서 구한  $\hat{\mathbf{e}}_{i}$ 와  $s_{k}$ 이다. 이를 통해  $s_{3} = 99.9\%$ 이므로 3개의 주성분으로 전체 운동을 표현하기에 충분할 것으로 보았다.



Fig. 8 Comparison of  $b_1$ ,  $b_2$  and  $b_3$  in a random maneuver scenario, acquired by projection and least square method for principal components of 25°/90° large angle zigzag test: (a) time series and (b) correlation between projection and LSQ

#### 김동환·김민창·이승범·서정화

| $ \begin{array}{c} \mu_{\mu}, \mu$ | V' M            | II D   |        |        |         | 221                                                |        |         |        |        | N' M            | II D   |        |            |         | 11'                      |        |        |        |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|--------|--------|---------|----------------------------------------------------|--------|---------|--------|--------|-----------------|--------|--------|------------|---------|--------------------------|--------|--------|--------|--------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $I_H, MI$       | -0.4   | -0.3   | -0.2   | -0.1    | ${\stackrel{\nu_m}{\stackrel{0}{\scriptstyle 0}}}$ | 0.1    | 0.2     | 0.3    | 0.4    | $N_H, N_I$      | -0.4   | -0.3   | -0.2       | -0.1    | ${\stackrel{\nu_m}{_0}}$ | 0.1    | 0.2    | 0.3    | 0.4    |
| 0.450       0.330       0.192       0.163       0.044       0.056       0.100       0.176       0.88       -0.044       -0.032       0.023       0.043       0.093       0.046       0.093       0.044       0.023       0.024       0.033       0.044       0.032       0.025       0.045       0.035       0.045       0.031       0.044       0.023       0.024       0.033       0.044       0.032       0.004       0.033       0.044       0.033       0.044       0.005       0.031       0.044       0.033       0.044       0.006       0.031       0.014       0.025       0.044       0.006       0.007       0.006       0.007       0.006       0.007       0.006       0.007       0.006       0.007       0.006       0.007       0.006       0.007       0.006       0.007       0.006       0.007       0.006       0.007       0.006       0.007       0.006       0.007       0.011       0.023       0.027       0.017       0.018       0.017       0.016       0.025       0.017       0.016       0.025       0.017       0.016       0.025       0.016       0.017       0.016       0.025       0.016       0.017       0.016       0.017       0.016       0.017       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0             | 0.528  | 0.354  | 0.223  | 0.132   | 0.079                                              | 0.064  | 0.087   | 0.150  | 0.256  | 1.0             | -0.069 | -0.050 | -0.042     | -0.042  | -0.052                   | -0.071 | -0.098 | -0.135 | -0.182 |
| 0.6       0.71       0.23       0.01       0.047       0.025       0.025       0.004       0.021       0.013       0.014       0.021       0.031       0.014       0.021       0.031       0.014       0.021       0.031       0.014       0.021       0.031       0.014       0.021       0.031       0.014       0.021       0.031       0.014       0.021       0.031       0.014       0.021       0.031       0.014       0.021       0.031       0.014       0.021       0.031       0.021       0.031       0.021       0.031       0.021       0.031       0.021       0.031       0.021       0.031       0.022       0.031       0.022       0.031       0.022       0.031       0.022       0.031       0.022       0.031       0.023       0.041       0.031       0.023       0.041       0.011       0.021       0.031       0.022       0.031       0.024       0.031       0.024       0.031       0.024       0.031       0.024       0.031       0.024       0.031       0.024       0.031       0.024       0.031       0.024       0.031       0.024       0.031       0.024       0.031       0.024       0.031       0.024       0.031       0.024       0.031       0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8             | 0.450  | 0.303  | 0.192  | 0.112   | 0.063                                              | 0.044  | 0.056   | 0.100  | 0.178  | 0.8             | -0.044 | -0.032 | -0.028     | -0.031  | -0.042                   | -0.059 | -0.084 | -0.116 | -0.157 |
| 0.4       0.233       0.132       0.032       0.032       0.005       -0.005       0.005       0.005       0.000       -0.088       -0.021       0.023       0.020       0.025       0.020       0.025       0.025       0.026       0.025       0.026       0.025       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       0.026       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6             | 0.371  | 0.253  | 0.161  | 0.093   | 0.047                                              | 0.025  | 0.025   | 0.049  | 0.099  | 0.6             | -0.019 | -0.013 | -0.014     | -0.020  | -0.031                   | -0.048 | -0.070 | -0.098 | -0.132 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4             | 0.293  | 0.203  | 0.130  | 0.073   | 0.032                                              | 0.005  | -0.006  | -0.001 | 0.021  | 0.4             | 0.006  | 0.005  | 0.000      | -0.008  | -0.021                   | -0.037 | -0.056 | -0.079 | -0.106 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2             | 0.214  | 0.152  | 0.099  | 0.053   | 0.016                                              | -0.015 | -0.037  | -0.052 | -0.058 | 0.2             | 0.031  | 0.024  | 0.014      | 0.003   | -0.010                   | -0.025 | -0.042 | -0.061 | -0.081 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r' 0            | 0.136  | 0.102  | 0.068  | - 0.034 | 0.000                                              | -0.034 | -0.068  | -0.102 | -0.136 | r' 0            | 0.056  | 0.042  | 0.028      | - 0.014 | 0.000                    | -0.014 | 0.028  | -0.042 | -0.056 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.2            | 0.057  | 0.051  | 0.037  | 0.014   | -0.016                                             | -0.054 | 0.099   | -0,153 | -0.215 | -0.2            | 0.081  | 0.061  | 0.042      | 0.025   | 0.011                    | -0.003 | 0.014  | -0.024 | -0.031 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.4            | -0.021 | 0.001  | 0.006  | -0.005  | -0.032                                             | -0.073 | -0.130  | -0.203 | -0.293 | -0.4            | 0.107  | 0.079  | 0.056      | 0.037   | 0.021                    | 0.009  | 0.000  | -0.005 | -0.006 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.6            | -0.100 | -0.049 | -0.025 | -0.025  | -0.048                                             | -0.093 | -0.161  | -0.253 | -0.372 | -0.6            | 0.132  | 0.098  | 0.070      | 0.048   | 0.031                    | 0.020  | 0.014  | 0.013  | 0.019  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.8            | -0.178 | -0.100 | -0.056 | -0.045  | -0.064                                             | -0.113 | -0.192  | -0.304 | -0.450 | -0.8            | 0.157  | 0.116  | 0.084      | 0.059   | 0.042                    | 0.031  | 0.028  | 0.032  | 0.044  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.0            | -0.257 | -0.150 | -0.087 | -0.064  | -0.079                                             | -0.132 | -0.223  | -0.354 | -0.529 | -1.0            | 0.182  | 0.135  | 0.098      | 0.071   | 0.052                    | 0.043  | 0.042  | 0.051  | 0.069  |
| -0.4       -0.3       -0.2       -0.1       0 <sup>4</sup> 0.1       0.2       0.3       0.4       n       -0.4       -0.3       -0.2       -0.1       0 <sup>4</sup> 0.1       0.2       0.3       0.4         1       0.537       0.380       0.260       0.167       0.09       0.023       -0.048       -0.11       -0.03       -0.02       -0.08       -0.02       -0.063       -0.03       -0.02       -0.08       -0.04       -0.03       -0.053       -0.032       -0.048       -0.04       -0.03       -0.02       -0.04       -0.03       -0.02       -0.04       -0.03       -0.02       -0.046       -0.03       -0.02       -0.04       -0.03       -0.02       -0.04       -0.03       -0.02       -0.04       -0.03       -0.02       -0.04       -0.03       -0.02       -0.04       -0.03       -0.02       -0.04       -0.03       -0.02       -0.04       -0.03       -0.02       -0.04       -0.03       -0.02       -0.01       -0.04       -0.03       -0.02       -0.01       -0.04       -0.03       -0.02       -0.01       -0.04       -0.03       -0.02       -0.01       -0.04       -0.02       -0.01       -0.04       -0.03       -0.02       -0.01 <td><math>Y'_{\mu}</math>. ON</td> <td>M</td> <td></td> <td></td> <td></td> <td><math>v'_m</math></td> <td></td> <td></td> <td></td> <td></td> <td><math>N'_{\mu}</math>, OI</td> <td>м</td> <td></td> <td></td> <td></td> <td><math>v'_m</math></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $Y'_{\mu}$ . ON | M      |        |        |         | $v'_m$                                             |        |         |        |        | $N'_{\mu}$ , OI | м      |        |            |         | $v'_m$                   |        |        |        |        |
| 1       0.537       0.380       0.260       0.167       0.091       0.023       -0.048       -0.130       -0.234       1       -0.074       -0.063       -0.057       -0.052       -0.052       -0.073       -0.099       -0.14       -0.144         0.8       0.317       0.222       0.165       0.101       0.052       0.007       -0.043       -0.19       -0.18       -0.012       -0.016       -0.022       -0.032       -0.046       -0.063       -0.012       -0.016       -0.022       -0.033       -0.004       -0.033       -0.004       -0.003       -0.016       -0.022       -0.033       -0.004       -0.033       -0.004       -0.032       -0.046       -0.063       -0.017       -0.017       -0.059       -0.119       -0.206       0.016       -0.022       -0.016       -0.022       -0.016       -0.024       -0.017       -0.023       -0.017       -0.023       -0.017       -0.028       -0.024       -0.017       -0.026       -0.019       -0.017       -0.024       -0.019       -0.017       -0.024       -0.017       -0.024       -0.017       -0.017       -0.028       -0.024       -0.017       -0.024       -0.017       -0.017       -0.028       -0.024       -0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 11 /          | -0.4   | -0.3   | -0.2   | -0.1    | 0"                                                 | 0.1    | 0.2     | 0.3    | 0.4    |                 | -0.4   | -0.3   | -0.2       | -0.1    | 0"                       | 0.1    | 0.2    | 0.3    | 0.4    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1               | 0.537  | 0.380  | 0.260  | 0.167   | 0.091                                              | 0.023  | -0.048  | -0.130 | -0.234 | 1               | -0.074 | -0.063 | -0.057     | -0.057  | -0.062                   | -0.073 | -0.090 | -0.114 | -0.144 |
| 0.6       0.373       0.252       0.165       0.101       0.052       0.007       -0.048       -0.108       -0.012       -0.016       -0.022       -0.032       -0.046       -0.063       -0.084       -0.009         0.4       0.122       0.204       0.166       0.099       -0.052       0.017       -0.019       -0.059       -0.191       0.209       0.138       0.076       -0.033       -0.007       -0.059       -0.119       0.229       0.036       0.014       -0.020       -0.034       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024       -0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8             | 0.448  | 0.311  | 0.209  | 0.132   | 0.070                                              | 0.015  | -0.043  | -0.115 | -0.210 | 0.8             | -0.041 | -0.036 | -0.035     | -0.038  | -0.046                   | -0.058 | -0.076 | -0.098 | -0.126 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6             | 0.373  | 0.252  | 0.165  | 0.101   | 0.052                                              | 0.007  | -0.043  | -0.108 | -0.197 | 0.6             | -0.012 | -0.012 | -0.016     | -0.022  | -0.032                   | -0.046 | -0.063 | -0.084 | -0.109 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4             | 0.312  | 0.204  | 0.128  | 0.075   | 0.034                                              | -0.004 | -0.049  | -0.109 | -0.196 | 0.4             | 0.014  | 0.008  | 0.001      | -0.009  | -0.020                   | -0.034 | -0.051 | -0.070 | -0.092 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2             | 0.264  | 0.166  | 0.099  | 0,052   | 0.017                                              | -0.017 | -0.059  | -0.119 | -0.206 | 0.2             | 0.037  | 0.026  | 0.015      | 0.003   | -0.010                   | -0.024 | -0.039 | -0.056 | -0.075 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r' 0            | 0.229  | 0.138  | 0.076  | 0.033   | 0.000                                              | -0.033 | -0.076  | -0.138 | -0.229 | r' 0            | 0.057  | 0.042  | 0.028      | 0.014   | 0.000                    | -0.014 | -0.028 | -0.042 | -0.057 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.2            | 0.206  | 0.119  | 0.059  | 0.017   | -0.017                                             | -0.052 | 0.099   | -0.166 | -0.264 | -0.2            | 0.075  | 0.056  | 0.039      | 0.024   | 0.010                    | -0.003 | 0.015  | 0.026  | -0.037 |
| -0.6 $0.197$ $0.108$ $0.043$ $-0.07$ $-0.052$ $-0.101$ $-0.155$ $-0.252$ $-0.373$ $-0.6$ $0.109$ $0.084$ $0.063$ $0.046$ $0.032$ $0.022$ $0.016$ $0.012$ $0.011$ $0.043$ $-0.015$ $0.070$ $-0.132$ $-0.200$ $-0.311$ $-0.448$ $-0.3$ $0.076$ $0.058$ $0.046$ $0.038$ $0.036$ $0.036$ $0.046$ $0.038$ $0.046$ $0.038$ $0.046$ $0.038$ $0.046$ $0.038$ $0.046$ $0.038$ $0.046$ $0.038$ $0.046$ $0.038$ $0.036$ $0.046$ $0.038$ $0.036$ $0.036$ $0.046$ $0.038$ $0.036$ $0.038$ $0.036$ $0.046$ $0.038$ $0.046$ $0.038$ $0.046$ $0.038$ $0.046$ $0.038$ $0.046$ $0.038$ $0.046$ $0.038$ $0.046$ $0.066$ $0.066$ $0.066$ $0.066$ $0.066$ $0.066$ $0.066$ $0.068$ $0.066$ $0.068$ $0.066$ $0.066$ $0.068$ $0.066$ $0.066$ $0.066$ $0.066$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.4            | 0.196  | 0.109  | 0.049  | 0.004   | -0.034                                             | -0.075 | -0.128  | -0.204 | -0.312 | -0.4            | 0.092  | 0.070  | 0.051      | 0.034   | 0.020                    | 0.009  | -0.001 | -0.008 | -0.014 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.6            | 0.197  | 0.108  | 0.043  | -0.007  | -0.052                                             | -0.101 | -0.165  | -0.252 | -0.373 | -0.6            | 0.109  | 0.084  | 0.063      | 0.046   | 0.032                    | 0.022  | 0.016  | 0.012  | 0.012  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.8            | 0.210  | 0.115  | 0.043  | -0.015  | -0.070                                             | -0.132 | -0.209  | -0.311 | -0.448 | -0.8            | 0.126  | 0.098  | 0.076      | 0.058   | 0.046                    | 0.038  | 0.035  | 0.036  | 0.041  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1              | 0.234  | 0.130  | 0.048  | -0.023  | -0.091                                             | -0.167 | -0.260  | -0.380 | -0.537 | -1              | 0.144  | 0.114  | 0.090      | 0.073   | 0.062                    | 0.057  | 0.057  | 0.063  | 0.074  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\varepsilon_Y$ |        |        |        |         | $v'_m$                                             |        |         |        |        | $\varepsilon_N$ | ~ .    |        |            |         | $v'_m$                   |        |        |        | ~ .    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4               | -0.4   | -0.3   | -0.2   | -0.1    | 0                                                  | 0.1    | 0.2     | 0.3    | 0.4    | 1 1             | -0.4   | -0.3   | -0.2       | -0.1    | 0 0 0 2 5                | 0.1    | 0.2    | 0.3    | 0.4    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0             | -0.008 | -0.025 | -0.035 | -0.033  | -0.011                                             | 0.039  | 0.002   | 0.201  | 0.450  | 0.0             | 0.010  | 0.044  | 0.034      | 0.030   | 0.055                    | 0.009  | -0.026 | -0.075 | -0.152 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0             | 0.002  | -0.007 | -0.016 | -0.018  | -0.007                                             | 0.027  | 0.092   | 0.200  | 0.501  | 0.8             | -0.011 | 0.015  | 0.024      | 0.024   | 0.013                    | -0.003 | -0.028 | -0.002 | -0.100 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0             | -0.002 | -0.001 | -0.004 | -0.006  | -0.004                                             | 0.000  | 0.064   | 0.140  | 0.270  | 0.0             | -0.020 | -0.004 | -0.000     | 0.009   | -0.004                   | -0.008 | -0.024 | -0.047 | -0.076 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4             | -0.016 | -0.001 | 0.002  | -0.001  | -0.002                                             | 0.003  | 0.040   | 0.063  | 0.202  | 0.4             | -0.027 | -0.008 | -0.002<br> |         | -0.007                   | -0.004 | -0.009 | -0.015 | -0.043 |
| -0.2 -0.139 -0.063 -0.021 -0.003 0.001 0.002 0.011 0.002 0.013 0.046 -0.2 0.022 0.015 0.009 0.005 0.002 0.001 0.003 0.001 0.002 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.010 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.020 0.011 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $r' \cap$       | -0.087 | -0.034 | -0.008 |         | 0,600                                              | 0.005  | =-0.007 | 0.003  | 0.086  | r' 0            | -0.001 | 0.000  | 0.002      | -0.001  | 0.002                    | -0.001 | 0.005  | -0.001 | 0.021  |
| -0.4 -0.202 -0.101 -0.040 -0.009 0.002 0.001 -0.002 0.001 0.017 -0.4 0.049 0.031 0.018 0.008 0.002 0.000 0.002 0.010 0.02<br>-0.6 -0.277 -0.147 -0.064 -0.017 0.004 0.007 0.003 -0.001 0.001 -0.6 0.078 0.048 0.025 0.008 -0.003 -0.008 -0.000 0.005 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -02             | -0.139 | -0.054 | -0.000 | -0.003  | 0.000                                              | 0.001  | 0.007   | 0.033  | 0.000  | -0.2            | 0.022  | 0.015  | 0.002      | 0.005   | 0.002                    | 0.001  |        | 0.001  | 0.002  |
| -0.6 -0.277 -0.147 -0.064 -0.017 0.004 0.007 0.003 -0.001 0.001 -0.6 0.078 0.048 0.025 0.008 -0.003 -0.006 0.005 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.4            | -0.202 | -0.101 | -0.040 | -0.009  | 0.002                                              | 0.001  | -0.002  | 0.001  | 0.017  | -0.4            | 0.049  | 0.031  | 0.018      | 0.008   | 0.002                    | 0.000  | 0.002  | 0.011  | 0.028  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.6            | -0.272 | -0.147 | -0.064 | -0.017  | 0.004                                              | 0.007  | 0.002   | -0.001 | 0.001  | -0.6            | 0.078  | 0.048  | 0.025      | 0.008   | -0.003                   | -0.008 | -0.006 | 0.005  | 0.026  |
| -0.8 -0.362 -0.200 -0.093 -0.027 0.006 0.018 0.015 0.006 -0.002 -0.8 0.107 0.063 0.029 0.003 -0.014 -0.024 -0.024 -0.013 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.8            | -0.362 | -0.200 | -0.093 | -0.027  | 0.006                                              | 0.018  | 0.015   | 0.006  | -0.002 | -0.8            | 0.107  | 0.063  | 0.029      | 0.003   | -0.014                   | -0.024 | -0.024 | -0.013 | 0.012  |
| -1 -0.457 -0.261 -0.126 -0.039 0.011 0.032 0.034 0.024 0.008 -1 0.133 0.073 0.027 -0.009 -0.034 -0.049 -0.053 -0.044 -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1              | -0.457 | -0.261 | -0.126 | -0.039  | 0.011                                              | 0.032  | 0.034   | 0.024  | 0.008  | -1              | 0.133  | 0.073  | 0.027      | -0.009  | -0.034                   | -0.049 | -0.053 | -0.044 | -0.017 |

Fig. 9 Comparison of  $Y_{H}'$  and  $N_{H}'$  estimated by Original model and MILP model: green rectangular boundary is captive model test condition of Yasukawa and Yoshimura (2015), and broken grey curve is motion in 25°/90° large angle zigzag test.

|             |                          |                        | 10                       |                        |                          |
|-------------|--------------------------|------------------------|--------------------------|------------------------|--------------------------|
|             | $\hat{\boldsymbol{e}}_1$ | $\hat{oldsymbol{e}}_2$ | $\hat{\boldsymbol{e}}_3$ | $\hat{oldsymbol{e}}_4$ | $\hat{oldsymbol{e}}_{5}$ |
| $s_k$       | 0.908                    | 0.980                  | 0.999                    | 1.000                  | 1.000                    |
| $v_m^{'}$   | -0.287                   | 0.813                  | 0.458                    | -0.203                 | 0.078                    |
| $r^{'}$     | 0.668                    | 0.230                  | 0.081                    | -0.106                 | -0.695                   |
| u'r'        | 0.647                    | 0.280                  | -0.176                   | 0.073                  | 0.683                    |
| $Y_{H}^{'}$ | 0.229                    | -0.448                 | 0.816                    | -0.203                 | 0.199                    |
| $N_{H}^{'}$ | -0.013                   | -0.082                 | -0.295                   | -0.949                 | 0.071                    |

| Table | 3 | PCA    | results | of  | 25          | °/90 | ° large | angle | zigzag | test | by |
|-------|---|--------|---------|-----|-------------|------|---------|-------|--------|------|----|
|       | 0 | rigina | al mode | el: | $\hat{e}_i$ | and  | $s_k$   |       |        |      |    |

 $A_{C}$ 에 대한 주요한 3개의 고유벡터를 이용해 선체 유체력의 MLP 모델을 구성하였다. 학습 데이터로 사용하기 위한 조종 시 나리오는 좌선회, 우선회 데이터를 포함하므로 데이터의 공칭상태  $(\overline{a})$ 는 0으로 간주할 수 있다. 그 결과는 식 (11)과 같다.

| $egin{array}{c} v'_m \ r' \ u'r' \ Y_{H}' \end{array}$ | $= b_1$ | $\begin{bmatrix} -0.287 \\ 0.668 \\ 0.647 \\ 0.229 \\ 0.012 \end{bmatrix}$ | $+ b_2$ | $\begin{bmatrix} 0.813 \\ 0.300 \\ 0.280 \\ -0.448 \\ 0.032 \end{bmatrix}$ | $+ b_3$ | $\begin{bmatrix} 0.458 \\ 0.082 \\ -0.176 \\ 0.816 \\ 0.205 \end{bmatrix}$ | (11) |
|--------------------------------------------------------|---------|----------------------------------------------------------------------------|---------|----------------------------------------------------------------------------|---------|----------------------------------------------------------------------------|------|
| $\begin{bmatrix} N_{H} \end{bmatrix}'$                 |         | $\begin{bmatrix} -0.225 \\ -0.013 \end{bmatrix}$                           |         | [-0.082]                                                                   |         | [-0.295]                                                                   |      |

#### 4.2 주성분 계수 추정 결과 비교

MLP에서 최소지승법을 통해 구한 주성분 계수(b(t))가 실제 계수와 얼마나 일치하는지를 평가하였다. 식 (2)에서 매 순간의 b(t) 세트를 a(t)의  $\hat{e}$ 에 대한 투영을 통해 구할 수 있음을 보 였다. 그리고 MLP에서는 b(t)를 LSQ를 통해 구하였으므로, 투 영과 LSQ를 통해 각각 구한 b(t)를 비교함으로써 MLP가 b(t)를 올바르게 식별하는지를 알 수 있다.

Fig. 8은 Original model을 이용해 수행한 무작위 조종 시나리 오의 시계열 운동 $(v'_m, r', u'r')$ 에서 매 순간에 대해 식 (2)의 투영과 최소자승법을 통해 구한 b(t)의 비교로, MLP 모델만을 이용해 수행한 조종 시뮬레이션이 아님에 유의한다. 조종 시나리 오는 Fig. 6에서 보인 조건과 같다.

b<sub>1</sub>과 b<sub>2</sub>에 대해서는 투영과 MLP간의 차이가 식별되지 않을 정도로 서로 같은 결과를 보였다. b<sub>3</sub>에 대해서는 일부 구간에서 값의 차이가 나타났지만, b<sub>1</sub>, b<sub>2</sub>, b<sub>3</sub>의 투영과 최소자승법 결과 의 상호상관도는 각각 1.00, 1.00, 99.9로 최소자승법의 적용 신 뢰도가 높은 것을 확인하였다. 따라서 본 연구에서 제안된 MLP 과정의 최소자승법으로도 3개의 주성분의 조합을 신뢰성있게 추 정해내어 유체력과 모멘트를 얻을 수 있을 것으로 판단하였다.



Fig. 10 Time series of dynamics variables of random maneuver test simulation by Original model and MILP model



Fig. 11 Comparison of trajectory by Original model and MILP model: (a) random maneuver and (b) 35° turning circle test

#### 4.3 유체력과 모멘트 비교

본 연구에서 개발한 MILP 기반의 선체 유체력 모델(MILP model)을 Original model과 비교하기 위해, 동일한 운동 조건에 서 유체력과 모멘트의 추정값을 구하여 서로의 유사성을 검토하였다. 이를 위해, 식 (12)와 같이 주어진 운동 조건(u',  $v'_m$ , r')에서 Original model과 MILP model로 얻은 유체력과 모멘트 변수( $a_{OM}$ ,  $a_{MILP}$ )의 차이를 전체  $a_{OM}$ 에서의 동적 범위 (dynamic range)로 나누어  $\epsilon_a(v'_m, r', u'r')$ 을 정의하였다.

$$\epsilon_{a}(v'_{m}, r', u'r') = \frac{a_{MILP} - a_{OM}}{\max(a_{OM}) - \min(a_{OM})}$$
(12)

Fig. 9는 전체 운동 범위에서의 비교 결과로, Yasukawa and Yoshimura(2015)의 구속모형시험 운동 범위와 본 연구의 25°/90° 대각도 지그재그 조종 시나리오의  $v'_m$ 과 r'의 운동 범

위를 각각 녹색 시각형 영역와 회색 점선으로 함께 표시하였다. 식 (4)와  $\beta$ 의 정의를 이용하면  $v'_m$ 과 u'의 관계가 도출되므로  $u'r'은 v'_m$ 과 r'이 주어지면 결정되는 값으로 보아 따로 표시 하지는 않았다.

전체 구속모형시험의 운동 범위에 비해 대각도 지그재그 조종 시험의 r'이 작은 범위로 나타났다. 대각도 지그재그 조종 시험 의 운동 영역에서는 MLP model과 Original model 간에  $Y'_H$ ,  $N'_H$ 의 차이가 작아서  $\epsilon_Y$ ,  $\epsilon_N$ 이 작게 나타날 것으로 기대하였 다. 실제 비교 결과에서는 대각도 지그재그 조종에서 r'이 다양 하지 않게 얻어졌지만, r'에 연관이 큰  $N'_H$ 은 조종 운동 영역의 비깥에서도 Original model과 MLP model과의 차이가 작은 것을 확인하였다. 이는 MLP model이 한정된 데이터로도 원본 데이터 를 효과적으로 재구성함을 시시한다.  $Y'_H$ 에 대해서는 대각도 지그재그 조종 시험 영역에서는 차이가 줄어들었으며  $v'_m$ 과 r'이 서로 다른 부호로 나타나는 운동 영역에서는 좋은 일치도를 보였다. Fig. 7에서  $v'_m$ 과 r'는 서로 강한 음의 상관관계를 보 이는 것을 확인했으므로, MLP를 이용한  $Y'_H$ 의 추정 또한 선박 조종에서 기대되는 2사분면, 4사분면의 운동 영역에서는 활용성 이 확보된 것으로 보인다.

#### 4.4 조종 시뮬레이션

Original model과 MILP model을 이용해 무작위 조종 시나리오 와 정속 선회, 지그재그 조종 시험의 시뮬레이션을 수행하였다. MILP model의 유체력 추정에 대해서는 앞에서 그 신뢰성을 확인 하였으나, 속도와 궤적을 구하기 위한 적분 과정에서는 오차의 누적으로 인해 결과에 차이가 발생할 수 있을 것으로 보았다. 그 리고  $X_{H}'$ 에 대해서는 MILP model에서는 경험식을 이용했으므 로, 이에 대한 차이가 u'과 다른 운동 변수 $(v'_{m}, r')$ 로 어떻게 전파되는지를 확인하려 했다.

무작위 조종 시나리오의 수행으로 얻어진 운동과 유체력, 모멘 트의 시계열을 Fig. 10에 나타내었다.  $X_H$ '에 대해서는 MLP model에 비해 Original model에서의 변화가 더 크게 나타났다. 하지만  $X_H$ '에서 모델에 무관하게 일정한  $R_0$ ' 항의 비중이 가장 컸고, 방향타의 저항 $(X_R)$  또한 크게 발생하여 결과적으로 X'에서는  $X_H$ '의 모델 방법에 따른 영향은 제한적인 것으로 판단 되었다. 이는 u가 두 모델에서 유사하게 나타난 것으로도 확인할 수 있다. 다른 운동 변수들은 서로 잘 일치하였으며, 조종 시나리 오가 진행됨에 따라 예상한대로 운동의 위상이 조금 틀어지는 현 상이 확인되었다.

무작위 조종 시나리오와 정속 선회 시험에 대한 시뮬레이션 결 과의 궤적을 Fig. 11에 나타내었다. 무작위 조종 시나리오에서는 Original model과 MLP model 모두 궤적이 잘 일치하여 Fig. 10 에서 확인한 운동의 위상 차이가 궤적에 영향을 줄 수준은 아님 을 알 수 있다. 정속 선회 시험 조건에서는 정상 상태에서 운동 변수의 차이가 누적되어 궤적의 차이가 나타났다. Fig. 12는 두 모델을 이용한 10°/10°, 20°/20° 지그재그 조종 시험의 선수각 시계열의 결과 비교이다. Fig. 11에서의 궤적과 같은 이유로 r'의 시간적분으로부터 얻어지는 ψ는 시간이 지남 에 따라 Original model과 차이가 발생했다. 그 크기는 10°/10° 지그재그 조종 시험의 시뮬레이션에서 더 크게 나타났다. 이는 MLP model의 개발이 25°/90° 대각도 지그재그 조종 시험의 결 과로부터 얻어졌기 때문에 타각이 유사한 20°/20° 지그재그 조종 시험이 상대적으로 동역학적 특성이 유사하기 때문으로 생각된다.

## 5. 결 론

주성분의 선형 결합을 통해 다변수를 식별하는 데이터 기반 모 델링 기법을 제안하고 3자유도 선박 조종 운동에 적용하였다.

25°/90° 대각도 지그재그 조종 시나리오의 수행 결과로부터 주성분 분석을 통해 주요한 동역학적 패턴을 추출하였다. 동역학 적 패턴의 선형 결합으로 저차원화된 동역학 모델을 구성하였다. 이에 대한 다음의 검증을 통해 선박의 3자유도 조종 운동 문제에 서는 기존의 16개의 조종계수 대신 3개의 주성분으로도 조종 모 델의 구성이 가능함을 확인하였다.



Fig. 12 Comparison of yaw angle in zigzag tests by Original model and MILP model: (a) 10°/10° zigzag test and (b) 20°/20° zigzag test

주어진 조종 운동에서 LSQ를 통해 주성분의 계수를 찾은 결과 는 투영을 통해 구한 결과와 유의미한 차이는 발생하지 않았으므 로, LSQ를 이용한 계수 식별이 유효함을 알 수 있었다. 선체의 운동 조건 별 유체력의 추정에 대해서는 시험에서 얻어진 운동 범위 밖에서도 좋은 예측 결과를 보였다. 그리고 저차원화된 동 역학 모델의 시뮬레이션 결과는 원래의 조종 모델의 시뮬레이션 결과와 잘 일치하였다. 이를 통해 주성분 분석은 선박의 조종 운 동을 효과적으로 저차원화하여 조종 운동 모델의 개발에 활용할 수 있음을 확인하였다.

제안된 MLP 기법은 인공신경망이나 다른 수학적 기법에 근거 한 회귀분석 모델에 비해 모델링이 간단하여 새로운 데이터를 반 영한 모델의 업데이트가 용이하다는 장점이 있다. 그리고 모델을 구성하는 주성분의 물리적 의미를 설명할 수 있기 때문에 자율운 항선박의 다양한 분이에 적용될 경우 자동화된 시스템 운용의 신 뢰성을 항상시킬 것으로 생각된다.

선박 조종 운동 분야에서의 MLP의 활용에 대해서는 향후 CFD나 모형시험을 통한 지유항주 데이터를 이용해 4지유도 조종 모델을 개발하는데 있어서의 적용 가능성을 평가하고자 한다. 그 리고 자유항주 시험에서 얻어진 추진기와 방향타 유체력 정보 또 한 현재의 수학적 모델 대신 데이터 기반 모델링에 MLP를 적용 한다면 조종 모델이 설명 가능하면서도 간소하게 개선될 것으로 기대된다.

# 후 기

본 연구는 한국연구재단 지원의 '우수신진연구(NRF-2021R1 C1C1014206)'사업으로 수행된 연구임.

### References

- Araki, M., Sadat-Hosseini, H., Sanada, Y., Tanimoto, K., Umeda, N. and Stern, F., 2012. Estimating maneuvering coefficients using system identification methods with experimental, system-based and CFD free-running trial data. *Ocean Engineering*, 51, pp.63–84.
- Bishop, C.M., 2006. *Pattern recognition and machine learning*. Springer Nature.
- Bonci, M., Viviani, M., Broglia, R. and Dubbioso, G., 2015. Method for estimating parameters of practical ship manoeuvring models based on the combination of RANSE computations and system identification. *Applied Ocean Research*, 52, pp.274–294.
- Brunton, S.L. and Kutz, J.N., 2019. Data-driven science and engineering: machine learning, dynamical systems, and control. Cambridge University Press.
- Chillcce, G. and el Moctar, O., 2023. Data-driven system identification of hydrodynamic maneuvering coefficients from free-running tests. *Physics of Fluids*, 35(5), Article No.057122

- Jian, C., Jiayuan, Z., Feng, X., Jianchuan, Y., Zaojian, Z., Hao, Y., Tao, X. and Luchun, Y., 2015. Parametric estimation of ship maneuvering motion with integral sample structure for identification. *Applied Ocean Research*, 52, pp.212–221.
- Kim, D., Kim, M., Lee, S. and J, Seo., 2024. A study on 4DOF ship dynamics in maneuver by principal component analysis. *Journal of the Society of Naval Architects of Korea*, 61(1), pp.29–44.
- Lever, J., Krzywinski, M. and Altman, N., 2017. Points of significance: principal component analysis. *Nature methods*, 14(7), pp.641–643.
- Lewandowski, E.M., 2004. *The dynamics of marine craft: maneuvering and seakeeping.* World scientific Publishing CO. Pte. Ltd.
- Liu, S.Y., Ouyang, Z.L., Zhou, X. and Zou, Z.J., 2023. Black-box modeling of ship maneuvering motion based on Gaussian progress regression optimized by particle swarm optimization. *International Journal of Offshore and Polar Engineering*, 33(4), pp.337–345.
- Lou, J., Wang, H., Wang, J., Cai, Q. and Yi, H., 2022. Deep learning method for 3–DOF motion prediction of unmanned surface vehicles based on real sea maneuverability test. *Ocean Engineering*, 250, Article No.111015.
- Luo, W. and Li, X., 2017. Measures to diminish the parameter drift in the modeling of ship manoeuvring using system identification. *Applied Ocean Research*, 67, pp.9–20.
- Ouyang, Z.L., Zou, Z.J. and Zou, L., 2023a. Adaptive hybrid-kernel function based Gaussian process regression for nonparametric modeling of ship maneuvering motion. *Ocean Engineering*, 268, Article No.113373.
- Ouyang, Z.L., Chen, G. and Zou, Z.J., 2023b. Identification modeling of ship maneuvering motion based on local Gaussian process regression. *Ocean Engineering*, 267, Article No.113251.

- Sutulo, S. and Soares, C.G., 2014. An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests. *Ocean Engineering*, 79, pp.10–25.
- Wakita, K., Maki, A., Umeda, N., Miyauchi, Y., Shimoji, T., RAchman, D.M. and Akimoto, Y., 2022. On neural network identification for low-speed ship maneuvering model. *Journal of Marine Science and Technology*, 22, pp.772–785.
- Wang, Z., Zou, Z. and Soares, C.G., 2019. Identification of ship manoeuvring motion based on nu-support vector machine. *Ocean Engineering*, 183, pp.270–281.
- Wang, T., Li, G., Hatledal, L.I., Skulstad, R., Æsøy, V. and Zhang, H., 2022. Incorporating approximate dynamics into data-driven calibrator: A representative model for ship maneuvering prediction. *IEEE Transactions on Industrial Informatics*, 18(3), pp.1781–1789.
- Xue, Y., Liu, Y., Ji, C. and Xue, G., 2020. Hydrodynamic parameter identification for ship manoeuvring mathematical models using a Bayesian approach. *Ocean Engineering*, 195, Article No.106612.
- Yasukawa, H. and Yoshimura, Y., 2015. Introduction of MMG standard method for ship maneuvering predictions. *Journal of Marine Science and Technology*, 22, pp.37–52.
- Zhang, X.G. and Zou, Z.J., 2011. Identification of Abkowitz model for ship manoeuvring motion using ε-support vector regression. *Journal of hydrodynamics*, 23(3), pp.353-360.

