| |
1. |
Balch, T. and Arkin, R.C., 1998. Behavior-based formation control for multirobot teams, IEEE transactions on robotics and automation, 14(6), pp.926-939.
|
2. |
Barnes, L., Field, M. and Valavanis, K., 2007. Unmanned ground vehicle swarm formation control using potential fields, 2007 Mediterranean Conference on Control andAutomation. IEEE, 2007.
|
3. |
Barnes, L., Alvis, W., Fields, M., Valavanis, K., and Moreno, W., 2006. Swarm formation control with potential fields formed by bivariate normal functions, 2006 14th Mediterranean Conference on Control and Automation. IEEE, 2006.
|
4. |
Bibuli, M., Bruzzone, G., Caccia, M., Gasparri, A., Priolo, A., and Zereik, E., 2014. Swarm-based path-following for cooperative unmanned surface vehicles. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 228(2) pp.192-207.
|
5. |
Borenstein, J. and Koren, Y., 1989. Real-time obstacle avoidance for fast mobile robots, IEEE Transactions on systems, Man, and Cybernetics 19(5) pp.1179-1187.
|
6. |
Borenstein, J., and Koren, Y., 1991. The vector field histogram-fast obstacle avoidance for mobile robots, IEEE transactions on robotics and automation, 7(3), pp.278-288.
|
7. |
Chakravarthy, A. and Ghose, D., 1998. Obstacle avoidance in a dynamic environment: A collision cone approach, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 28(5), pp.562-574.
|
8. |
Cui, R., Ge, S.S., How, B.V.E. and Choo, Y.S., 2010. Leader–follower formation control of underactuated autonomous underwater vehicles, Ocean Engineering, 37(17-18), pp.1491-1502.
|
9. |
Ge, S.S. and Cui, Y.J., 2002. Dynamic motion planning for mobile robots using potential field method, Autonomous robots 13.3 (2002), pp.207-222.
|
10. |
Ghommam, J. and Saad, M., 2017. Adaptive leader–follower formation control of underactuated surface vessels under asymmetric range and bearing constraints, IEEE Transactions on Vehicular Technology, 67(2), pp. 852-865
|
11. |
Kania, E.B., 2019. Chinese military innovation in artificial intelligence. Testimony to the US-China Economic and Security Review Commission. |
12. |
Khatib, M., and Chatila, R., 1995. An extended potential field approach for mobile robot sensor-based motions, Proc. International Conference on Intelligent Autonomous Systems (IAS’4)., 1995 |
13. |
Kim, J.W., 2020, Local path planning for autonomous vehicles based model predictive control using velocity obstacles potential field in emergency situation, M.S. Korea Institute of Science and Technology. |
14. |
Ko, N.Y. and Lee, H.B., 1996. Avoidability measure in moving obstacle avoidance problem and its use for robot motion planning, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS'96, Vol. 3 |
15. |
Kuwata, Y., Wolf, M.T., Zarzhitsky, D and Huntsberger, T.L, 2013. Safe maritime autonomous navigation with COLREGS, using velocity obstacles, IEEE Journal of Oceanic Engineering, 39(1), pp.110-119.
|
16. |
Leonard, N.E. and Fiorelli, E., 2001. Virtual leaders, artificial potentials and coordinated control of groups, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228), IEEE, pp.2968-2973. |
17. |
Lewis, M.A. and Tan, K.H., 1997. High precision formation control of mobile robots using virtual structures. Autonomous robots, 4(4), pp.387-403.
|
18. |
Oh, Y.S., Park, J.H., Kim, J.H. and Huh, U.Y., 2011. Formation conatrol and obstacle avoidance of mobile robot for moving object tracking, Journal of Electrical Engineering and Technology(JEET), 60(4) pp.856-861.
|
19. |
Park, J.H. and Huh, U.Y., 2015. Obstacle avoidance of leader-follower robots based on potential field and flexible formation. The Transactions of the Korean Institute of Electrical Engineers. pp.1389-1390. |
20. |
Park, J.H., Lee, Y.J., Jung, J.D., Kang, M.J. Choi, H.T. and Choi J.W., 2021, Preliminary study of potential field based formation controlfor cooperative navigation of multiple autonomous surface vehicles, Institute of Control Robotics and Systems, pp.290-291. |
21. |
Rimon, E. and Koditschek, D.E., 1992. Exact robot navigation using artificial potential functions, IEEE Transactions on Robotics And Automation, 8(5), pp.501-518.
|
22. |
Sadowska, A., den Broek, T. V., Huijberts, H., van de Wouw, N., Kostić, D., and Nijmeijer, H., 2011. A virtual structure approach to formation control of unicycle mobile robots using mutual coupling. International Journal of Control, 84(11), pp.1886-1902.
|
23. |
Son, N.S., Han, J.W., Pyo, C.S. and Park, K,R., 2020. On the sea surveillance and illegal ship control by using unmanned surface vehicle swarm. Society of Naval Architects of Korea, 2020. |
24. |
Sonnenburg, C.R. and Woolsey, C.A., 2013, Modeling, identification, and control of an unmanned surface vehicle. Journal of Field Robotics, 2013, 30(3), pp. 371-398.
|
25. |
Sun, Z., Zhang, G., Lu, Y. and Zhang, W., 2018. Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation. ISA transactions, 72, pp.15-24.
|
26. |
Tak, M.H., Joo, Y.H., 2014. Formation control algorithm for swarm robots using virtual force. The Transactions of the Korean Institute of Electrical Engineers, 63(10), pp. 1428-1433.
|
27. |
Tychonievich, L., Zaret, D., Mantegna, J., Evans, R., Muehle, E., and Martin, S., 1989. A maneuvering-board approach to path planning with moving obstacles, Proceedings of the 11th international joint conference on Artificial intelligence, Vol.2, pp.1017-1021. |
28. |
Ulrich, I. and Borenstein, J., 1998. VFH+: Reliable obstacle avoidance for fast mobile robots, Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146). Vol. 2. |
29. |
Woo, J.H. and Kim, N.K., 2020, Collision avoidance for an unmanned surface vehicle using deep reinforcement learning, Ocean Eng ineering, 199 (2020): 107001.
|
30. |
Yu, Z., Bao, X. and Nonami, K., 2008, Course keeping control of an autonomous boat using low cost sensors. Journal of System Design and Dynamics, 2(1), pp.389-400.
|