| |
1. |
Araki, M., Sadat-Hosseini, H., Sanada, Y., Tanimoto, K., Umeda, N. and Stern, F., 2012. Estimating maneuvering coefficients using system identification methods with experimental, system-based and CFD free-running trial data. Ocean Engineering, 51, pp.63-84.
|
2. |
Bishop, C.M., 2006. Pattern recognition and machine learning. Springer Nature. |
3. |
Bonci, M., Viviani, M., Broglia, R. and Dubbioso, G., 2015. Method for estimating parameters of practical ship manoeuvring models based on the combination of RANSE computations and system identification. Applied Ocean Research, 52, pp.274-294.
|
4. |
Brunton, S.L. and Kutz, J.N., 2019. Data-driven science and engineering: machine learning, dynamical systems, and control. Cambridge University Press.
|
5. |
Chillcce, G. and el Moctar, O., 2023. Data-driven system identification of hydrodynamic maneuvering coefficients from free-running tests. Physics of Fluids, 35(5), Article No.057122
|
6. |
Jian, C., Jiayuan, Z., Feng, X., Jianchuan, Y., Zaojian, Z., Hao, Y., Tao, X. and Luchun, Y., 2015. Parametric estimation of ship maneuvering motion with integral sample structure for identification. Applied Ocean Research, 52, pp.212-221.
|
7. |
Kim, D., Kim, M., Lee, S. and J, Seo., 2024. A study on 4DOF ship dynamics in maneuver by principal component analysis. Journal of the Society of Naval Architects of Korea, 61(1), pp.29-44.
|
8. |
Lever, J., Krzywinski, M. and Altman, N., 2017. Points of significance: principal component analysis. Nature methods, 14(7), pp.641-643.
|
9. |
Lewandowski, E.M., 2004. The dynamics of marine craft: maneuvering and seakeeping. World scientific Publishing CO. Pte. Ltd.
|
10. |
Liu, S.Y., Ouyang, Z.L., Zhou, X. and Zou, Z.J., 2023. Black-box modeling of ship maneuvering motion based on Gaussian progress regression optimized by particle swarm optimization. International Journal of Offshore and Polar Engineering, 33(4), pp.337-345.
|
11. |
Lou, J., Wang, H., Wang, J., Cai, Q. and Yi, H., 2022. Deep learning method for 3-DOF motion prediction of unmanned surface vehicles based on real sea maneuverability test. Ocean Engineering, 250, Article No.111015.
|
12. |
Luo, W. and Li, X., 2017. Measures to diminish the parameter drift in the modeling of ship manoeuvring using system identification. Applied Ocean Research, 67, pp.9-20.
|
13. |
Ouyang, Z.L., Zou, Z.J. and Zou, L., 2023a. Adaptive hybrid-kernel function based Gaussian process regression for nonparametric modeling of ship maneuvering motion. Ocean Engineering, 268, Article No.113373.
|
14. |
Ouyang, Z.L., Chen, G. and Zou, Z.J., 2023b. Identification modeling of ship maneuvering motion based on local Gaussian process regression. Ocean Engineering, 267, Article No.113251.
|
15. |
Sutulo, S. and Soares, C.G., 2014. An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests. Ocean Engineering, 79, pp.10-25.
|
16. |
Wakita, K., Maki, A., Umeda, N., Miyauchi, Y., Shimoji, T., RAchman, D.M. and Akimoto, Y., 2022. On neural network identification for low-speed ship maneuvering model. Journal of Marine Science and Technology, 22, pp.772-785.
|
17. |
Wang, Z., Zou, Z. and Soares, C.G., 2019. Identification of ship manoeuvring motion based on nu-support vector machine. Ocean Engineering, 183, pp.270-281.
|
18. |
Wang, T., Li, G., Hatledal, L.I., Skulstad, R., Æsøy, V. and Zhang, H., 2022. Incorporating approximate dynamics into data-driven calibrator: A representative model for ship maneuvering prediction. IEEE Transactions on Industrial Informatics, 18(3), pp.1781-1789.
|
19. |
Xue, Y., Liu, Y., Ji, C. and Xue, G., 2020. Hydrodynamic parameter identification for ship manoeuvring mathematical models using a Bayesian approach. Ocean Engineering, 195, Article No.106612.
|
20. |
Yasukawa, H. and Yoshimura, Y., 2015. Introduction of MMG standard method for ship maneuvering predictions. Journal of Marine Science and Technology, 22, pp.37-52.
|
21. |
Zhang, X.G. and Zou, Z.J., 2011. Identification of Abkowitz model for ship manoeuvring motion using ε-support vector regression. Journal of hydrodynamics, 23(3), pp.353-360.
|