| |
1. |
Abkowitz, M.A., 1980. Measurement of hydrodynamic characteristics from ship maneuvering trials by system identification. Annual Meeting of the Society of Naval Architects and Marine Engineers, Jersey City, NJ. |
2. |
Araki, M., Sadat-Hosseini, H., Sanada, Y., Tanimoto, K., Umeda, N. and Stern, F., 2012. Estimating maneuvering coefficients using system identification methods with experimental, system-based, and CFD free-running trial data. Ocean Engineering, 51, pp.63-84.
|
3. |
Casado, M.H., Ferreira, R. and Velasco, F.J., 2007. Identification of nonlinear ship model parameters based on the turning circle test. Journal of Ship Research, 51(2), pp.174-181.
|
4. |
Chillcce, G. and el Moctar, O., 2023. Data-driven system identification of hydrodynamic maneuvering coefficients from free-running tests. Physics of Fluids, 35, Article No. 057122.
|
5. |
Hamamoto, M. and Kim, Y.-S., 1993. A new coordinate system and the equations describing manoeuvring motion of a ship in waves. Journal of the Society of Naval Architects of Japan, 173, pp.209-220.
|
6. |
ITTC, 2017. Captive model test. International Towing Tank Conference – Recommended Procedures and Guidelines, 7.5-02-06-02. |
7. |
Jeon, M., Yoon, H.K., Park, J., Rhee, S.H. and Seo, J., 2022. Identification of 4-DoF maneuvering mathematical models for a combatant in intact and damaged conditions. International Journal of Naval Architecture and Ocean Engineering, 14, Article no.100480.
|
8. |
Kim, D., Yun, K., 2021. Simple kinematic model generation by learning control inputs and velocity outputs of a ship. Journal of Navigation and Port Research, 45(6), pp.284-297. |
9. |
Kim, K., Kim, H., Choi, S., Na, K.-I., Lee, H. and Seo, J., 2022. Development of ship dynamics model by free-running model tests and regression. Journal of the Society of Naval Architects of Korea, 59(3), pp.173-182.
|
10. |
Kim, D.-H., Kim, M., Lee, S. and Seo, J., 2024. A study on 4DOF ship dynamics in maneuver by principal component analysis. Journal of the Society of Naval Architects of Korea, 61(1), pp.29-44.
|
11. |
Nouri, N.M. and Valadi, M., 2017. Robust input design for nonlinear dynamic modeling of AUV. ISA Transactions, 70, pp.288-297.
|
12. |
Okuda, R., Yasukawa, H. and Matsuda, A., 2023. Validation of maneuvering simulations for a KCS at different forward speeds using the 4-DOF MMG method. Ocean Engineering, 284, 115174.
|
13. |
Sutulo, S. and Guedes Soares, C., 2023. Application of an offline identification algorithm for adjusting parameters on a modular manoeuvring mathematical model. Ocean Engineering, 279, Article No. 114328.
|
14. |
Wakita, K., Maki, A., Umeda, N., Miyauchi, Y., Shimoji, T., RAchman, D.M. and Akimoto, Y., 2022. On neural network identification for low-speed ship maneuvering model. Journal of Marine Science and Technology, 22, pp.772-785.
|
15. |
Wang, Z., Soares, C.G. & Zou, Z., 2020. Optimal design of excitation signal for identification of nonlinear ship manoeuvring model. Ocean Engineering, 196, Article No. 106778.
|
16. |
Wang, T., Li, G., Hatledal, L. I., Skulstad, R., Æsøy, V. and Zhang, H., 2022. Incorporating approximate dynamics into data-driven calibrator: a representative model for ship maneuvering prediction. IEEE Transactions on Industrial Informatics, 18(3), pp. 1781-1789.
|
17. |
Yasukawa, H., Sakuno, R. and Yoshimura, Y., 2019. Practical maneuvering simulation method of ships considering the roll-coupling effect. Journal of Marine Science and Technology, 24, pp.1280-1296.
|
18. |
Yoon, H.K. and Rhee, K.P., 2003. Identification of hydrodynamic coefficients in ship maneuvering equations of motion by estimation-before-modeling technique. Ocean Engineering, 30, pp.2379-2404.
|